3.9.76 \(\int \frac {(c d^2-c e^2 x^2)^{3/2}}{(d+e x)^{9/2}} \, dx\) [876]

Optimal. Leaf size=139 \[ \frac {3 c \sqrt {c d^2-c e^2 x^2}}{4 e (d+e x)^{3/2}}-\frac {\left (c d^2-c e^2 x^2\right )^{3/2}}{2 e (d+e x)^{7/2}}-\frac {3 c^{3/2} \tanh ^{-1}\left (\frac {\sqrt {c d^2-c e^2 x^2}}{\sqrt {2} \sqrt {c} \sqrt {d} \sqrt {d+e x}}\right )}{4 \sqrt {2} \sqrt {d} e} \]

[Out]

-1/2*(-c*e^2*x^2+c*d^2)^(3/2)/e/(e*x+d)^(7/2)-3/8*c^(3/2)*arctanh(1/2*(-c*e^2*x^2+c*d^2)^(1/2)*2^(1/2)/c^(1/2)
/d^(1/2)/(e*x+d)^(1/2))/e*2^(1/2)/d^(1/2)+3/4*c*(-c*e^2*x^2+c*d^2)^(1/2)/e/(e*x+d)^(3/2)

________________________________________________________________________________________

Rubi [A]
time = 0.05, antiderivative size = 139, normalized size of antiderivative = 1.00, number of steps used = 4, number of rules used = 3, integrand size = 29, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.103, Rules used = {677, 675, 214} \begin {gather*} -\frac {3 c^{3/2} \tanh ^{-1}\left (\frac {\sqrt {c d^2-c e^2 x^2}}{\sqrt {2} \sqrt {c} \sqrt {d} \sqrt {d+e x}}\right )}{4 \sqrt {2} \sqrt {d} e}+\frac {3 c \sqrt {c d^2-c e^2 x^2}}{4 e (d+e x)^{3/2}}-\frac {\left (c d^2-c e^2 x^2\right )^{3/2}}{2 e (d+e x)^{7/2}} \end {gather*}

Antiderivative was successfully verified.

[In]

Int[(c*d^2 - c*e^2*x^2)^(3/2)/(d + e*x)^(9/2),x]

[Out]

(3*c*Sqrt[c*d^2 - c*e^2*x^2])/(4*e*(d + e*x)^(3/2)) - (c*d^2 - c*e^2*x^2)^(3/2)/(2*e*(d + e*x)^(7/2)) - (3*c^(
3/2)*ArcTanh[Sqrt[c*d^2 - c*e^2*x^2]/(Sqrt[2]*Sqrt[c]*Sqrt[d]*Sqrt[d + e*x])])/(4*Sqrt[2]*Sqrt[d]*e)

Rule 214

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(Rt[-a/b, 2]/a)*ArcTanh[x/Rt[-a/b, 2]], x] /; FreeQ[{a, b},
x] && NegQ[a/b]

Rule 675

Int[1/(Sqrt[(d_) + (e_.)*(x_)]*Sqrt[(a_) + (c_.)*(x_)^2]), x_Symbol] :> Dist[2*e, Subst[Int[1/(2*c*d + e^2*x^2
), x], x, Sqrt[a + c*x^2]/Sqrt[d + e*x]], x] /; FreeQ[{a, c, d, e}, x] && EqQ[c*d^2 + a*e^2, 0]

Rule 677

Int[((d_) + (e_.)*(x_))^(m_)*((a_) + (c_.)*(x_)^2)^(p_), x_Symbol] :> Simp[(d + e*x)^(m + 1)*((a + c*x^2)^p/(e
*(m + p + 1))), x] - Dist[c*(p/(e^2*(m + p + 1))), Int[(d + e*x)^(m + 2)*(a + c*x^2)^(p - 1), x], x] /; FreeQ[
{a, c, d, e}, x] && EqQ[c*d^2 + a*e^2, 0] && GtQ[p, 0] && (LtQ[m, -2] || EqQ[m + 2*p + 1, 0]) && NeQ[m + p + 1
, 0] && IntegerQ[2*p]

Rubi steps

\begin {align*} \int \frac {\left (c d^2-c e^2 x^2\right )^{3/2}}{(d+e x)^{9/2}} \, dx &=-\frac {\left (c d^2-c e^2 x^2\right )^{3/2}}{2 e (d+e x)^{7/2}}-\frac {1}{4} (3 c) \int \frac {\sqrt {c d^2-c e^2 x^2}}{(d+e x)^{5/2}} \, dx\\ &=\frac {3 c \sqrt {c d^2-c e^2 x^2}}{4 e (d+e x)^{3/2}}-\frac {\left (c d^2-c e^2 x^2\right )^{3/2}}{2 e (d+e x)^{7/2}}+\frac {1}{8} \left (3 c^2\right ) \int \frac {1}{\sqrt {d+e x} \sqrt {c d^2-c e^2 x^2}} \, dx\\ &=\frac {3 c \sqrt {c d^2-c e^2 x^2}}{4 e (d+e x)^{3/2}}-\frac {\left (c d^2-c e^2 x^2\right )^{3/2}}{2 e (d+e x)^{7/2}}+\frac {1}{4} \left (3 c^2 e\right ) \text {Subst}\left (\int \frac {1}{-2 c d e^2+e^2 x^2} \, dx,x,\frac {\sqrt {c d^2-c e^2 x^2}}{\sqrt {d+e x}}\right )\\ &=\frac {3 c \sqrt {c d^2-c e^2 x^2}}{4 e (d+e x)^{3/2}}-\frac {\left (c d^2-c e^2 x^2\right )^{3/2}}{2 e (d+e x)^{7/2}}-\frac {3 c^{3/2} \tanh ^{-1}\left (\frac {\sqrt {c d^2-c e^2 x^2}}{\sqrt {2} \sqrt {c} \sqrt {d} \sqrt {d+e x}}\right )}{4 \sqrt {2} \sqrt {d} e}\\ \end {align*}

________________________________________________________________________________________

Mathematica [A]
time = 0.45, size = 109, normalized size = 0.78 \begin {gather*} \frac {c \sqrt {c \left (d^2-e^2 x^2\right )} \left (\frac {2 (d+5 e x)}{(d+e x)^{5/2}}-\frac {3 \sqrt {2} \tanh ^{-1}\left (\frac {\sqrt {2} \sqrt {d} \sqrt {d+e x}}{\sqrt {d^2-e^2 x^2}}\right )}{\sqrt {d} \sqrt {d^2-e^2 x^2}}\right )}{8 e} \end {gather*}

Antiderivative was successfully verified.

[In]

Integrate[(c*d^2 - c*e^2*x^2)^(3/2)/(d + e*x)^(9/2),x]

[Out]

(c*Sqrt[c*(d^2 - e^2*x^2)]*((2*(d + 5*e*x))/(d + e*x)^(5/2) - (3*Sqrt[2]*ArcTanh[(Sqrt[2]*Sqrt[d]*Sqrt[d + e*x
])/Sqrt[d^2 - e^2*x^2]])/(Sqrt[d]*Sqrt[d^2 - e^2*x^2])))/(8*e)

________________________________________________________________________________________

Maple [A]
time = 0.49, size = 176, normalized size = 1.27

method result size
default \(-\frac {\sqrt {c \left (-e^{2} x^{2}+d^{2}\right )}\, c \left (3 \arctanh \left (\frac {\sqrt {c \left (-e x +d \right )}\, \sqrt {2}}{2 \sqrt {c d}}\right ) \sqrt {2}\, c \,e^{2} x^{2}+6 \arctanh \left (\frac {\sqrt {c \left (-e x +d \right )}\, \sqrt {2}}{2 \sqrt {c d}}\right ) \sqrt {2}\, c d e x +3 \arctanh \left (\frac {\sqrt {c \left (-e x +d \right )}\, \sqrt {2}}{2 \sqrt {c d}}\right ) \sqrt {2}\, c \,d^{2}-10 e x \sqrt {c d}\, \sqrt {c \left (-e x +d \right )}-2 \sqrt {c \left (-e x +d \right )}\, \sqrt {c d}\, d \right )}{8 \left (e x +d \right )^{\frac {5}{2}} \sqrt {c \left (-e x +d \right )}\, e \sqrt {c d}}\) \(176\)

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((-c*e^2*x^2+c*d^2)^(3/2)/(e*x+d)^(9/2),x,method=_RETURNVERBOSE)

[Out]

-1/8*(c*(-e^2*x^2+d^2))^(1/2)*c*(3*arctanh(1/2*(c*(-e*x+d))^(1/2)*2^(1/2)/(c*d)^(1/2))*2^(1/2)*c*e^2*x^2+6*arc
tanh(1/2*(c*(-e*x+d))^(1/2)*2^(1/2)/(c*d)^(1/2))*2^(1/2)*c*d*e*x+3*arctanh(1/2*(c*(-e*x+d))^(1/2)*2^(1/2)/(c*d
)^(1/2))*2^(1/2)*c*d^2-10*e*x*(c*d)^(1/2)*(c*(-e*x+d))^(1/2)-2*(c*(-e*x+d))^(1/2)*(c*d)^(1/2)*d)/(e*x+d)^(5/2)
/(c*(-e*x+d))^(1/2)/e/(c*d)^(1/2)

________________________________________________________________________________________

Maxima [F]
time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \text {Failed to integrate} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((-c*e^2*x^2+c*d^2)^(3/2)/(e*x+d)^(9/2),x, algorithm="maxima")

[Out]

integrate((-c*x^2*e^2 + c*d^2)^(3/2)/(x*e + d)^(9/2), x)

________________________________________________________________________________________

Fricas [A]
time = 2.80, size = 362, normalized size = 2.60 \begin {gather*} \left [\frac {3 \, \sqrt {\frac {1}{2}} {\left (c x^{3} e^{3} + 3 \, c d x^{2} e^{2} + 3 \, c d^{2} x e + c d^{3}\right )} \sqrt {\frac {c}{d}} \log \left (-\frac {c x^{2} e^{2} - 2 \, c d x e - 3 \, c d^{2} + 4 \, \sqrt {\frac {1}{2}} \sqrt {-c x^{2} e^{2} + c d^{2}} \sqrt {x e + d} d \sqrt {\frac {c}{d}}}{x^{2} e^{2} + 2 \, d x e + d^{2}}\right ) + 2 \, \sqrt {-c x^{2} e^{2} + c d^{2}} {\left (5 \, c x e + c d\right )} \sqrt {x e + d}}{8 \, {\left (x^{3} e^{4} + 3 \, d x^{2} e^{3} + 3 \, d^{2} x e^{2} + d^{3} e\right )}}, -\frac {3 \, \sqrt {\frac {1}{2}} {\left (c x^{3} e^{3} + 3 \, c d x^{2} e^{2} + 3 \, c d^{2} x e + c d^{3}\right )} \sqrt {-\frac {c}{d}} \arctan \left (\frac {2 \, \sqrt {\frac {1}{2}} \sqrt {-c x^{2} e^{2} + c d^{2}} \sqrt {x e + d} d \sqrt {-\frac {c}{d}}}{c x^{2} e^{2} - c d^{2}}\right ) - \sqrt {-c x^{2} e^{2} + c d^{2}} {\left (5 \, c x e + c d\right )} \sqrt {x e + d}}{4 \, {\left (x^{3} e^{4} + 3 \, d x^{2} e^{3} + 3 \, d^{2} x e^{2} + d^{3} e\right )}}\right ] \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((-c*e^2*x^2+c*d^2)^(3/2)/(e*x+d)^(9/2),x, algorithm="fricas")

[Out]

[1/8*(3*sqrt(1/2)*(c*x^3*e^3 + 3*c*d*x^2*e^2 + 3*c*d^2*x*e + c*d^3)*sqrt(c/d)*log(-(c*x^2*e^2 - 2*c*d*x*e - 3*
c*d^2 + 4*sqrt(1/2)*sqrt(-c*x^2*e^2 + c*d^2)*sqrt(x*e + d)*d*sqrt(c/d))/(x^2*e^2 + 2*d*x*e + d^2)) + 2*sqrt(-c
*x^2*e^2 + c*d^2)*(5*c*x*e + c*d)*sqrt(x*e + d))/(x^3*e^4 + 3*d*x^2*e^3 + 3*d^2*x*e^2 + d^3*e), -1/4*(3*sqrt(1
/2)*(c*x^3*e^3 + 3*c*d*x^2*e^2 + 3*c*d^2*x*e + c*d^3)*sqrt(-c/d)*arctan(2*sqrt(1/2)*sqrt(-c*x^2*e^2 + c*d^2)*s
qrt(x*e + d)*d*sqrt(-c/d)/(c*x^2*e^2 - c*d^2)) - sqrt(-c*x^2*e^2 + c*d^2)*(5*c*x*e + c*d)*sqrt(x*e + d))/(x^3*
e^4 + 3*d*x^2*e^3 + 3*d^2*x*e^2 + d^3*e)]

________________________________________________________________________________________

Sympy [F]
time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \int \frac {\left (- c \left (- d + e x\right ) \left (d + e x\right )\right )^{\frac {3}{2}}}{\left (d + e x\right )^{\frac {9}{2}}}\, dx \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((-c*e**2*x**2+c*d**2)**(3/2)/(e*x+d)**(9/2),x)

[Out]

Integral((-c*(-d + e*x)*(d + e*x))**(3/2)/(d + e*x)**(9/2), x)

________________________________________________________________________________________

Giac [A]
time = 1.54, size = 104, normalized size = 0.75 \begin {gather*} \frac {1}{8} \, {\left (\frac {3 \, \sqrt {2} c^{2} \arctan \left (\frac {\sqrt {2} \sqrt {-{\left (x e + d\right )} c + 2 \, c d}}{2 \, \sqrt {-c d}}\right )}{\sqrt {-c d}} + \frac {2 \, {\left (6 \, \sqrt {-{\left (x e + d\right )} c + 2 \, c d} c^{3} d - 5 \, {\left (-{\left (x e + d\right )} c + 2 \, c d\right )}^{\frac {3}{2}} c^{2}\right )}}{{\left (x e + d\right )}^{2} c^{2}}\right )} e^{\left (-1\right )} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((-c*e^2*x^2+c*d^2)^(3/2)/(e*x+d)^(9/2),x, algorithm="giac")

[Out]

1/8*(3*sqrt(2)*c^2*arctan(1/2*sqrt(2)*sqrt(-(x*e + d)*c + 2*c*d)/sqrt(-c*d))/sqrt(-c*d) + 2*(6*sqrt(-(x*e + d)
*c + 2*c*d)*c^3*d - 5*(-(x*e + d)*c + 2*c*d)^(3/2)*c^2)/((x*e + d)^2*c^2))*e^(-1)

________________________________________________________________________________________

Mupad [F]
time = 0.00, size = -1, normalized size = -0.01 \begin {gather*} \int \frac {{\left (c\,d^2-c\,e^2\,x^2\right )}^{3/2}}{{\left (d+e\,x\right )}^{9/2}} \,d x \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((c*d^2 - c*e^2*x^2)^(3/2)/(d + e*x)^(9/2),x)

[Out]

int((c*d^2 - c*e^2*x^2)^(3/2)/(d + e*x)^(9/2), x)

________________________________________________________________________________________